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Abstract
Recurrent neural networks (RNNs) have demonstrated very impressive performances in learning sequential data, such as in
language translation and music generation. Here, we show that the intrinsic computational aspect of RNNs is very similar
to that of classical stress update algorithms in modeling history-dependent materials with an emphasis on viscoelasticity.
Several numerical examples are designed, including 1-dimensional and 3-dimensional cases, which testify the ability of RNN
model to compute the viscoelastic response when predicting on unseen test data. Additionally, it is found that the RNNmodel
trained only on linear and step strain inputs can perform very well on prediction of completely different quadratic strain
inputs, demonstrating certain level of generalization ability in extrapolation. Moreover, it is observed that the extrapolation
ability depends on the types of strain inputs. The performance is better for continuous strain inputs than that for jump strain
inputs. The differences in the generalization ability of RNN models in viscoelasticity and other history-dependent materials
are discussed. It suggests that RNN data-driven modeling can be an alternative to the conventional viscoelasticity models.

Keywords Constitutive modeling · Deep learning · History-dependent materials · Recurrent neural networks · Viscoelasticity

1 Introduction

Abroad rangeof engineeringmaterials are history-dependent,
withmany of them rendering irreversible deformation behav-
iors and energy dissipation. The constitutive equations
describing these materials need to take care of the history
associated with material points. For example, the constitu-
tive law of rate-independent J2 plasticity expresses plastic
flow rule and hardening law to trace the plastic defor-
mation and yield strength, along with the satisfaction of
several additional conditions, such as von Mises yield con-
dition and consistency condition [24,33]. Other examples of
history-dependency in constitutive laws include viscoplas-
ticity [29,34], and viscoelasticity [19,20] etc.

The classical mechanical approach to numerically study
history-dependent materials is to incorporate the so-called
internal state variables (or hidden variables and history vari-
ables) that can be applied to track deformation history [18].
This includes many strain-like and stress-like variables, for
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example the viscous strain or the viscous stress in viscoelas-
tic models. These variables are named so as contrast to the
measurable or external variables such as strains and temper-
atures, and because they carry the history information of the
state evolution [18].

While these classic computational mechanics methods
have enjoyed great success, the advent of big data and the
advances in computer power have supplemented data-driven
methods as a new paradigm to the classical computational
counterpart [4,21,35]. In particular, the application of the
machine learning (ML) technique is becoming more and
more popular and accepted. ML and one of its subsets,
namely the deep learning (DL) have brought in numer-
ous breakthroughs across various fields, such as material
discovery [7,13,28] and drug design [6,8,26,38]. DL takes
advantages of deep neural networks (DNNs) and big data
to learn the underlying relationships between the inputs and
outputs contained in a specific database, such as the material
structural information and corresponding material proper-
ties in a typical computational mechanics study. However,
for a certain type of data that has dependency in the inputs,
such as the sequence of sentences in language translation,
the traditional DNNs do not perform very well. For this type
of problems involving long-term dependency, the recurrent
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neural networks (RNNs) have been shown very effective and
successfully applied to problems like natural language pro-
cessing [9].

This feature of the data type is involved in computational
modeling of history-dependent materials, in which the strain
and stress sequences are temporally sequential. RNNs have
found various applications to model these materials. For
example, the first work using RNNs in history-dependent
plasticity was by Mozaffar et al. [25]. While there are a
number of works using RNNs on plasticity/elastoplasticity
modeling [15,25,36] and viscoplasticity modeling [12], few
attention is paid to viscoelastic materials. Apparently, this
transition would be trivial. But the results show that due to
the differences of the nature of viscoelasticity and plasticity,
the efforts to train a RNN model and the generalization abil-
ity of developed RNNs will be different for viscoelasticity
problems and plasticity problems.

The paper is organized as follows. We first draw the sim-
ilarity of computational facts between the computational
modeling of history-dependent materials and the method-
ology of RNNs following standard presentation in each
field. This shall explain why RNN model is naturally adept
at this task rather than a brutal-force implementation of
DNN-viscoelasticity models. The numerical algorithm for
viscoelastic modeling using the generalized Maxwell mate-
rial model, and RNNs model development are then given in
Sect. 3. In Sect. 4, we showcase several numerical examples
to demonstrate the performance of the RNNs models. In par-
ticular, we test the extrapolation ability of the RNN model
on unseen and totally different strain sequences. Finally, we
conclude this work with discussions and closing remarks.

2 Intrinsic similarity between thematerial
model of history-dependent materials and
RNNs

2.1 Physics-based history-dependent model

In general in numerical computations, the stress update algo-
rithm is employed to keep track of the stresses and internal
state variables for history-dependentmaterials [3]. Using ξ as
a collection of state variables, the stress σ and state variables
ξ at time tn+1 can be updated by:

σ n+1 = σ (εn+1, ξn)

ξn+1 = ξ(εn+1, ξn)
(1)

where εn+1 is the strain measure at time tn+1. Note that
equations in Eq. (1) may need to impose other constraints
which can be very complex and highly nonlinear, such as
the yield condition and plastic flows in elastoplastic and vis-
coplastic problems. Thus, the classical approach is to use

iterative ways, such as Newton-Raphsonmethod, to compute
the stresses and state variables.Numericallymany algorithms
have been successfully applied for these materials, such as
return-mapping in plasticity and elastoplasticity problems
[30,32]. However, for viscoelastic problems, there are no
such additional conditions for admissible stresses. Therefore,
it is assumed that the complete stress update algorithm is for-
mulated generally in Eq. (1). We note that this key difference
will affect the efforts required in RNN model development
and corresponding generalization ability on viscoelasticity
problems compared to that on plasticity-related problems.

One can see that stresses at a current time depend on pre-
vious state values which recursively rely on more previous
states. This characteristic features the essence of history-
dependent materials. In this work, we focus only on the
viscoelasticity. More details are presented in the later Sec-
tions.

2.2 Themethodology of RNNs

The general idea of RNN is to use hidden state vectors to
store history information in the sequential data. A simple
RNN unit (so-called vanilla RNN) is shown in Fig. 1a, in
which a〈t−1〉 is named the hidden state vector at time tn−1.
x 〈t〉 and y〈t〉 are inputs and outputs at time tn , respectively.
The outputs and hidden state vector are updated by:

a〈t〉 = g(Waaa
〈t−1〉 + Wax x

〈t〉 + ba)

y〈t〉 = g(Wyaa
〈t〉 + by)

(2)

where g(·) is the activation function, such as the sigmoid
function. The hyperbolic tangent function tanh(·) is used
for illustration in Fig. 1. Waa , Way , ba and by are trainable
weights and biases to be determined by the training process
using the training dataset by minimizing the loss function
[14].

Note that there are several different architectures ofRNNs,
such as one-to-one, one-to-many, many-to-one and many-to-
many in terms of input and output sequence [16]. In addition,
the length of the inputs and outputs as well as the hidden
state vectors can be set flexibly depending on the problem at
hand. From the perspective of mechanical modeling, stresses
respond to external inputs, e.g., strains or thermal inputs
sequentially in time. As a result, the many-to-many archi-
tecture is usually adopted. The length of strains and stresses
at a single time step can be one or multiple depending on the
problem, as will be demonstrated later.

In practical applications, however, the vanilla RNNs have
several issues, such as vanishing gradient and not suitable
for long-term dependency problems. Advanced units have
been more widely applied to address the issues associated
with vanilla unit, for example the long short-term memory
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Fig. 1 RNN cell architecture. a A simple RNN unit; b an LSTM unit

(LSTM) [17] as shown in Fig. 1b and the gated recurrent unit
(GRU) [9,36]. In this work, the LSTM is employed and will
be introduced later.

One notices that by using the hidden state vector a, the
RNN is able to transmit information from earlier states to
later states. This intrinsic philosophy exactly resembles the
methodology of constitutive modeling of history-dependent
materials as presented in Sect. 2.1. This built-in similar-
ity makes the RNNs naturally fit to learn the viscoelastic
law. However, an essential question to ask is: is the nonlin-
ear activation function enough to capture the nonlinearity in
real materials? Not really, but the universal approximation
theorem states that by using several layers of neurons, a neu-
ral network can approximate any continuous function [10].
Therefore, RNNs can perform very well to learn the underly-
ing physics-based viscoelasticity law provided that enough
and uniform training data is given.

3 Computational methodology

3.1 The generalizedMaxwell model for
viscoelasticity

Without loss of generality, we consider the infinitesimal-
strain viscoelasticity for simplicity of presentation and data
generation. Finite-deformation viscoelasticity can be simi-
larly constructed considering the finite-strain kinematics and
constitutive law, following e.g. thework by Simo andHughes
[31]. Note, however, that in addition to these phenomenologi-
cal models, there are physics-based models of viscoelasticity
[22,23] and viscoelasticity with microstructures [11]. Fig-
ure 2 illustrates a 1-dimensional phenomenological model of
viscoelasticity, viz., the generalized Maxwell model, which
uses springs and dashpots to represent the elastic and viscous
response, respectively. This model contains an elastic spring
and a number of N Maxwell elements in parallel. The spring
element with the modulus μ∞ is used to represent the ulti-

Fig. 2 Phenomenological model of viscoelasticity composed by
springs and dashpots to represent elastic and viscous component. The
elastic modules and dynamic viscosity are denoted by μ and η, respec-
tively

mate state when the system reaches the equilibrium after a
sufficient long time (the rate of change of internal state vari-
ables are zeros). TheMaxwell elements are used to represent
the unsteady responses.

In addition to the infinitesimal strain assumption, themate-
rial is considered to be linear isotropic. Due to the fact that
for many viscoelastic materials, such as elastomers, the bulk
response is much stiffer than the deviatoric response [31],
the material response can be treated separately by two parts:
the bulk and deviatoric part. The additive split of the strain is
carried out by ε = e+ 1

3Θ1whereΘ = tr[ε] is the volumet-
ric strain and e is the deviatoric strain. In addition, the strain
energy density W 0(ε) at initial state (without viscous defor-
mation) is also assumed to be an addition of bulk partU 0(Θ)

and deviatoric part W̄ 0(e) as W 0(ε) = W̄ 0(e) + U 0(Θ).
Because of themechanical difference between bulk and devi-
atoric response, the relaxation in bulk response is neglected.

Introduce the temporal discretization by [0, T ] = ∪[tn,
tn+1] and tn+1 = tn + �tn . According to the work by Simo
and Hughes [31], the total stress can be computed by:

σ n+1 = U 0
′
(Θn+1)1 + γ∞S0n+1 +

N∑

I=1

γI h
(I )
n+1 (3)
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Fig. 3 Strain sequences (ε11)
and stress responses under
uniaxial loading condition. a
Linear strain input; b step strain
input; c the stress response (σ11)
of linear strain; d the stress
response (σ11) of step strain.
Parameters used: k = 1 × 10−2;
h1 = 0; h2 = 1 × 10−2;
t1 = 0.5

0 0.2 0.4 0.6 0.8 1

Time(s)

0

2

4

6

8

10

12

S
tre

ss
 (P

a)
10-2

Exact solution
Numerical solution

Exact solution
Numerical solution

c d

a b

0 0.2 0.4 0.6 0.8 1

Time(s)

0

2

4

6

8

S
tre

ss
 (P

a)

10-1

where U 0
′
(Θn+1)1 is the initial bulk stress tensor at time

tn+1, S0n+1 the initial elastic deviatoric stress tensor at time

tn+1, and h(I )
n+1 the transient deviatoric stress tensor in the

I − th Maxwell element at time tn+1. γI = μI
μ

is the fraction
of elastic shear modulus at I − th element to that of the total
shear modulus μ = μ∞ + ∑N

I=1 μI . The other quantities in
Eq. (3) are updated by:

en+1 = dev[εn+1]
S0n+1 = dev[∂eW̄ 0(en+1)]
h(I )
n+1 = exp(−�tn/λI )h(I )

n + exp(−�tn/2λI )(S0n+1 − S0n )
(4)

where λI = ηI /μI is the relaxation time for I-th Maxwell
element. Equations (3) and (4) together define a detailed
example of the stress update algorithm for the viscoelas-
tic model corresponding to Eq. (1). Here, h(I ) (I =
1, . . . , N ) are the internal stress-like variables, which recur-
sively depend on the values from previous history.

To showcase the stress-strain relation in this viscoelastic
model, a single Maxwell element is adopted as the mate-
rial model with a linear strain and a step strain as the strain
inputs as shown in Fig. 3a, b. Unless otherwise stated explic-
itly, the material parameters in the single Maxwell model
used in this work are elastic modulus E = 100 Pa, Pois-
son’s ratio ν = 0.45 and dynamic viscosity η = 5 Pa · s.
The corresponding stresses for the given strains are shown
in Fig. 3c, d. One can see that for the linear strain case,
the stress gradually becomes constant, meaning the stress
is more maintained by the viscous dashpot as time elapsed

while at the very beginning the stress is mainly maintained
by the elastic spring (linearly increasing stress). The stress
response to the step strain exactly demonstrates the stress
relaxation phenomenon (strains are gradually taken up by
the viscous dashpot). This viscoelastic behavior is due to the
intrinsic nature of elastic springs and viscous dashpots. The
former can response instantaneously to external loads while
the latter needs time to develop. Thus, there will be stress
jumps with step strain inputs.

3.2 Data generation

The database is of great importance in a ML-based study as
the ML model relies completely on the data at hand to learn
the underlying mechanisms. To that end, two types of strain
sequences are considered in the time interval [0s, 1s] with
20 time steps using a single Maxwell model to represent the
viscoelasticity. The linear type strain and the step type strain
are adopted as shown in Fig. 3. The range of the controlling
parameters, viz., the slope k in the linear strain, and the step
height h1, h2, and the time interval t1 are set in Table 1.

There are 5000 uniformpoints sampled for the slope k, and
20 uniform points sampled for the step height h1, h2, and the
time interval t1 in the given range listed in Table 1. This gives
rise to 5,000 data samples for linear strains and 8000 data
samples for step strains. The corresponding stresses can be
obtained by the stress update algorithm presented in Sect. 3.1
given the strains generated (the initial stresses are set to be all
zeros). To perform this algorithm, the strain tensor is formed
by placing the generated 1-dimensional strain data accord-
ingly under the uniaxial loading conditions. In this case, the
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Table 1 Parameters setting for strains in data generation

Type Variable range No. of uniform points

Linear strain k ∈ [1, 100] × 10−4 5000

Step strain h1 ∈ [0, 10] × 10−3 20

h2 ∈ [0, 10] × 10−3 20

t1 ∈ [0.1, 0.9] 20

Voigt notation of the strain tensor is [ε,−νε,−νε, 0, 0, 0]
considering the Poisson’s effect. In generating the database,
the material parameters are kept the same as previous set-
tings. Therefore, a database containing 13,000 stress-strain
sequences is generated for RNN model development.

3.3 The LSTM unit

The LSTM unit is an advanced version of the vanilla RNN
unit, as illustrated in Fig. 1. Compared to the vanilla version,
a new state variable c<t> (cell state) is added. In addition,
the LSTMunit has three gates (forget gate, input/update gate,
and output gate) to determine the information flow in and out
of the unit cell. The control algorithm for an LSTM unit is:

f <t> = σ(W f aa
<t−1> + W f x x

<t> + b f )

i<t> = σ(Wiaa
<t−1> + Wix x

<t> + bi )

o<t> = σ(Woaa
<t−1> + Wox x

<t> + bo)

c̃<t> = tanh(Wcaa
<t−1> + Wcx x

<t> + bc)

c<t> = f <t> ∗ c<t−1> + i<t> ∗ c̃<t>

a<t> = o<t> ∗ tanh(c<t>)

(5)

where f <t>, i<t>, and o<t> stand for forget, update, and
output gate’s activated vector, respectively. σ(·) is the sig-
moid function. c̃<t> and c<t> are input activated and the
state vector. W f a , W f x , Wia , Wix ,Woa , Wox , Wca , Wcx , and
b f , bi , bo, bc are trainable weights and biases. The symbol ∗
denotes the element-wise multiplication.

From the implementation perspective of the RNN model,
the input strain x<t> at time tn can be 1-dimensional (1D),
such as ε11(t) component alone. It can bemulti-dimensional,
too. For example, the complete strain vector in 3-dimensional
(3D) problems using Voigt notation has 6 components. This
can be employed easily in a computational code. The code to
develop the RNN model is implemented under the platform
of Tensorflow package [1].

3.4 RNNmodel development

The database is split into two sets: a training set with 90%
data and a test set with the remaining 10% data since the
database has a large amount of data samples. The training set

is further divided into a train set and validation setwith an 8–2
ratio during training to make sure comparable performances
of the model on these two datasets are observed. Namely, a
72%–18%–10% split ratio is applied to the train, validation,
and test set, respectively. In the training process, the mean
squared error (MSE) between predictions and ground truth
values is set as the loss function and the mean absolute error
(MAE) is selected as the evaluation metric of the model.

In this work, we systematically test a series of RNNmod-
els with different LSTM layers and various number of hidden
units (the hyperparameter tuning results can be found in the
Supporting Information). For each RNN model, it is trained
on the training dataset first. Then the loss and MAE metrics
on the unseen test dataset using the RNNmodel developed in
each case can be obtained, which gives guidance on the selec-
tion of the best model. For 3D problems, RNN model with
two LSTM layers and 50 hidden units for each layer is found
to have very good performances. While for 1D problems,
RNN model with a single LSTM layer and 5 hidden units is
enough to develop very good prediction ability (Results are
showed in the Supporting Information).

4 Numerical examples

4.1 Uniaxial example using 3D inputs

For 3D problems, the shape of the strains and stresses in
the database are identically [13,000, 120]. In developing the
RNNmodel, this shape has to be reshaped to [13,000, 20, 6]
where the 6 indicates the dimension of the strain input at a
single time step and there are 20 time steps in total.

The evolution of loss and MAE metrics during the train-
ing process on the training and validation dataset is given
in Fig. 4a. It can be seen that the performance of the model
on both training dataset and validation dataset are in very
good agreement, confirming that a stable and robust model
has been developed.

After the model is well developed, the prediction abil-
ity is then tested using the unseen test dataset. There are
1, 300 strain and respective stress sequences in the test dataset
unseen by the developed model, which is then applied to
make predictions on this test dataset. Consequently, 1, 300
stress pairs of ground truth and prediction are obtained. A
following R2 correlation analysis for these stress pairs in
different components shows that almost all predictions have
extremely high correlations close to 1 to the corresponding
ground truth, as indicated by Fig. 4b.

To testify the learning ability of the built RNN model,
the predicted response and corresponding true viscoelastic
response by four randomly selected cases in the test dataset
are shown in Fig. 5. Note that since it is an uniaxial tension
test, only strain component ε22 is plotted to guide the eyes
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Fig. 4 RNN model evaluation. a The loss and MAE evolution of training and validation dataset during training for the RNN model with two RNN
layers (each with 50 hidden units); b the R2 correlation score distribution for the predictions of the stresses on the unseen test dataset

Fig. 5 RNN model evaluation with four randomly selected cases in the test dataset. a, b Linear strain cases; c, d step strain cases. For each case,
the strain sequence is plotted in the above subfigure and the predicted stress as well as the true stress are plotted in the bottom subfigure

as it would otherwise overlap with component ε33. As can
be seen from this result that RNNs do perform tremendously
well in predicting unseen strain data in both linear strain and
step strain cases. Note also that the temporal resolution has an
influence on the stress response. A higher resolution than 20
time intervals (used in this work) would be more consistent
with theoretical viscoelastic behaviors.

4.2 Learning ability check

In practical situations, a developed computational model is
usually applied to external test of similar problems. How-

ever, the extrapolation ability of general ML models is not
guaranteed since the underlying mechanism for those data
beyond the training database may not be consistent with
that of the training data. To test whether the developed RNN
model is generalizable beyond the training database and to
which degree it is generalizable, we further conduct extrapo-
lation tests in two scenarios. In the first scenario, we test the
performance of the model on the same strain types (linear
and step strain) but with strain ranges beyond the training
database; in the second scenario, we test the model on com-
pletely different strain sequences, e.g. the quadratic stainwith
ε11(t) = αt2 and multi-step strain (two steps) sequences.
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Fig. 6 The extrapolation test (Test-1) of the RNN model using four unseen strain sequences beyond the strains in the training database. For each
case, the strain sequence is plotted in the above subfigure and the predicted stress as well as the true stress are plotted in the bottom subfigure

Table 2 Parameters setting for strain generation in the extrapolation
tests

Type Variable value
Test-1 Test-2

Linear strain k = 105 × 10−4 k = 200 × 10−4

Step strain h1 = 0 h1 = 0

h2 = 15 × 10−3 h2 = 40 × 10−3

t1 = 0.5 t1 = 0.5

Quadratic strain α = 1 × 10−3 α = 10 × 10−3

Two-step strain h1 = 0 h1 = 0

h2 = 7.5 × 10−3 h2 = 20 × 10−3

h3 = 15 × 10−3 h3 = 40 × 10−3

t1 = 0.3 t1 = 0.3

t2 = 0.6 t2 = 0.6

These tests are carried out twice using two scales of magni-
tude, as listed in Table 2.

The developed RNN model in the previous example is
again applied to make predictions on these totally new strain
sequences. Figure 6 gives the stress-strain plots in the first test
(Test-1) with small scale extrapolation, in which the strain
sequences are plotted in the upper subfigures. The compar-
ison between the predicted stress responses and the ground
truth values are plotted in the corresponding bottom subplots.
Surprisingly, all four cases demonstrate good performances
in small scale extrapolation, especially for the quadratic and
2-step strain cases since the patterns of them are never seen
in the training dataset.

The extrapolation test on the larger scale test (Test-2)
is shown in Fig. 7. It is seen that the RNN-viscoelasticity
model behaves less well in step strains (single step and
multi-step strain) but still performs exceptionally in the
linear and quadratic cases. The results show that the RNN-
viscoelasticity model behaves better for continuous strain
inputs than that for jump strain inputs. As a result, it may be
safe to state that proper extrapolation capability of the RNN-
viscoelasticity model is demonstrated, upon certain degrees.
Therefore, the constructed RNN-viscoelasticity model does
learn the physical law of viscoelasticity. But for sake of accu-
racy, the extrapolation scale should not be too much beyond
the training dataset.

4.3 Offline Version of the RNN architecture for high
flexibility

Though the developed RNN-viscoelasticity model demon-
strates good performances in the above tests, the flexibility
of it is limited when applied to external problems (offline
applications). This limitation originates from the use of the
many-to-many architecture in model training (online train-
ing) as shown in Fig. 8a, which uses prescribed strains with
fixed length of time steps as the inputs to calculate the stress
responses for efficient model training using batches of train-
ing data. However, in practical problems, the strains may
not be trivial and thus they are not easily prescribed before-
hand. Although by padding zeros to the trailing part of the
strain inputs, the RNN-viscoelasticity model can still make
predictions on the stresses. In this way, the prediction is fea-
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Fig. 7 The extrapolation test (Test-2) of the RNN model using four unseen strain sequences beyond the strains in the training database. For each
case, the strain sequence is plotted in the above subfigure and the predicted stress as well as the true stress are plotted in the bottom subfigure

a b

Fig. 8 RNN model architectures. a Online training version of many-to-many type for multi-timestep inputs; b offline application version of one-
to-one type for single timestep inputs. For the state variables, the superscript denotes the time step while the subscript denotes the LSTM layer
number

sible, though it is at the cost of unnecessary computation
for padded trivial strains at the trailing end. To this end, for
offline applications, the architecture can be slightly modified
for convenience and efficiency in solving practical problems
without any additional computations, as shown in Fig. 8b.

This is inspired by two observations. The first is the clas-
sic stress update algorithm, in which the stress responses are
updated time wisely with previous state variables as formu-
lated in Eq. (1). The second is that all LSTM cells in the
same layer actually share the same weights in the many-to-
many architecture and only the hidden states are updating.
The realization of the offline version of one-to-one architec-
ture is endowed by the flexibility of the Tensorflow package.
The procedure is summarized as follows. After the RNN

model is developed, the weights for the LSTM layers and
the time-distributed dense layers can be obtained. Then a
similar architecture (two LSTM layers plus an additional
time-distributed dense layer) with just one time step is cre-
ated. The weights and biases of the one-to-one architecture
is directly assigned without any training using the obtained
weights and biases from the well-trained RNN model. Of
great importance is that along with the stress output, the
updated state variables [a<n>

1 , c<n>
1 ] and [a<n>

2 , c<n>
2 ] in

these two LSTM layers will also be returned, which can
be easily set in Tensowflow with ‘return_state=True’. These
updated new states will be used to calculate the next stress
responses.At the very beginning, states are usually initialized
with zeros (or set in other ways as long as it is consistent with
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Fig. 9 The prediction results with the one-to-one RNN model. a Linear strain; b step strain

the settings in training). In this manner, the simplicity of the
stress update can be retained as the conventional algorithms.

With this offline version of the RNNmodel, a linear strain
and a step strain case with a longer time are studied. Each
case with inputs of 40 time steps (total time of 2 s) as contrast
to the 20 time steps in the training dataset (total time of 1 s).
The strains are in the same range of magnitude as the train-
ing dataset. The predicted responses compared with the true
values are plotted in Fig. 9. One can see that very good agree-
ment has been made, justifying the flexibility of the offline
version of the RNN architecture for practical problems.

5 Discussion

In general, ML models have difficulties in extrapolation.
Depending on the quality of the dataset and the complexity of
underlying relationships, the ability of extrapolation can be
varied a lot case by case. Generally, it is known that if enough
uniform and representative data is given, ML can learn this
hidden mapping behind the dataset, however complex they
are by the universal approximation theorem [10]. However,
in a quantitative sense, it is hard to specify uniform and rep-
resentative data. As a result, the ability of ML models highly
depends on the data at hand. In terms of RNN modeling of
history-dependent materials, for example, in a previous work
[12], the extrapolation ability of RNN model is very poor in
viscoplasticitymodeling, while the preliminary results in this
work demonstrate pretty good performance to certain degree
in extrapolation. We think it is due to the key difference in
nature of the constitutive laws in them. For plasticity-related
problems, there are more constraints (e.g. plastic flow and
hardening law) than viscoelasticity. Additionally, there is no
need to deal with admissible stresses bounded by a yield
surface in the stress space in the constitutive law of pure vis-
coelasticity as that of plasticity. Consequently, the efforts to
sample uniform and representative data and to train a RNN

model are significantly different, which eventually results in
differences in the performance of RNN models for different
history-dependent materials.

In numerical tests of the RNN-viscoelasticity models,
it is also found that the dimensionality of the problems
significantly affects the efforts to train the model and its
extrapolation ability.When implementing aRNNmodelwith
1D input of strains at each time step, namely the strain
sequences of component ε11 and stress sequences of com-
ponent σ11 (see in the Supporting Information), use of a
single LSTM layer with 5 hidden neurons is enough to
have exceptional extrapolation ability even on a larger scale
extrapolation. This is a typical characteristic of data-driven
studies, which would require trial-and-error and tedious
hyperparameter tuning process for complicated problems.
Another feature of neural network model is that due to
the bias-variance tradeoff, increasing the complexity of the
model does not necessarily improve the model performance
[12].

For more practical problems involving computational
modeling of materials under complex external loading, it is
necessary to keep track of the deformation or the displace-
ment of thematerial. It would require a numerical framework
to solve the balance of momentum equation with spatial
and temporal discretization (in dynamics modeling), such as
finite element method (FEM), together with the constitutive
law. This is out of the content of the current work since the
integration of FEM and RNNs has actually been studied, for
example, in FEM modeling of viscoplastic microstructures
[12] and elastoplastic microstructures [36]. Another impor-
tant step in FEM modeling is to get the consistent tangent
to form the stiffness matrix in solving the discretized system
equation, which can be feasibly done in coding, attributed to
the automatic differentiation technique [12,36] in Tensorflow
package. However, if physical conditions are not explicitly
enforced, there will be numerical instability issues [37]. For
instance, the stiffness matrix should be symmetric and pos-
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itive definite, while these conditions may not be satisfied
in direct auto-differentiation if lacking explicit enforcement.
Using the physics-informed neural network [27] can solve
this problem and lead to better generalization ability of the
models. This in turn makes the ML model more explainable
and generalizable [2,5].

6 Summary and concluding remarks

In this work, the recurrent neural network model was applied
to learn the underlying physical law of viscoelasticity. It
was motivated by the intrinsic resemblance of the compu-
tational aspect of classical mechanical modeling of history-
dependent materials and the key idea of RNNs. Numerical
examples with 1-dimensional and multi-dimensional linear
and step strain inputs were examined under uniaxial load-
ing conditions. The classical viscoelastic modeling scheme
serves as a tool to generate the database for RNN models
to learn. While in this work only the infinitesimal strain
sequences were considered, the extension to the large strain
viscoelasticity can also be accommodated following thefinite
strain viscoelasticity law [31].

The developed RNN models prove notable performances
in this study when predicting on the unseen test dataset (lin-
ear and step strain inputs), as well as the strain sequences
beyond the range of magnitude in the training database to
certain degree. It is especially worthy of note in that these
constructed RNN models behave very well in generalization
investigations to predict on the quadratic strain and multi-
step strain sequences at certain level, though the pattern of
them is not even present in the training database.

In addition, for offline application using the one-to-one
version of the RNN model, the advantages of conventional
stress update algorithm can be retained. This architecture
is more flexible in predictions of responses in longer time
sequences, which is more suitable to solve practical prob-
lems.

In summary, in this work the RNNmodel has been showed
to be able to learn the hidden physical law of viscoelasticity
pretty effectively. This suggests that deep learning techniques
could be very helpful and may become a new paradigm in
computational mechanics field.
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